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ABSTRACT 

Hologrammetry and speckle metrology have become very active areas 
of research, in recent years, and, as a result of this, there now 
exists quite a collection of techniques that are applicable to a 
wide variety of problems encountered in today's science and tech
nology . This review presents state-of-the-art advances in these 
measuring techniques and demonstrates their utility in such ap
plications as displacement and strain measurement, vibration anal
ysis, studies of rotating structures, surface roughness measure 
ment, nondestructive testing, contouring, as well as in biostereo
metrics . 
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Introduction 

In the last decade, hologrammetry and its companion field of speckle me
trology have grown tremendously and found numerous applications in such 
diverse fields as aerospace , automotive, electronics, machinery, trans 
portation, equipment, packaging , and other industries, and even in medical 
and dental laboratories [1, 2] . All of these advances are well documented 
in various publications, too numerous to be even listed in this paper. 
And the field is sti ll growing. Constantly, there are new ways found to 
apply hologrammetry and speckle metrology to solve problems that were un 
solvable heretofore, as was excellently summarized by Erf [3, 4], Stetson 
[5], and Vest [6] . As new methematical procedures for quantitative in
terpretation of holograms and specklegrams are developed, it becomes 
easier to use these state-of- the -art techniques in various metrologic 
applications [7] . 

Interpretation of holographic images, however, is based on ones abil i ty 
to delineate various parameters such as, for example, dis placement, il
lumination and observation propagation directions, object surface normals, 
normals to fringes , etc . Recent studies [2, 8-10] show that pertinent 
relationships between the involved holographic parameters, because of their 
vectorial nature, can best be described by projection matrices; the pro 
jection matrix transforms a vector into its shadow on a surface . These 
new formulations allow a straightforward interpretation of holograms with 
the aid of programmable hand calculators, thus, reducing ones reliance on 
large digital computers for solution of governing equations. Furthermore, 
the relationships of hologram in terferometry apply equally well to problems 
encountered in speckle metrology [2] . 

In the following, these and other most recent developments in hologram
metry and related fields will be presented and their util ity in such ap 
plications as displacement and strain measurement , surface roughness mea
surement, contouring, and other areas,will be discussed. 

Displacement measurement 

The problem of extracting displacements directly from the fringes of holo
gram interferometry has been solved in a number of ways [11] . Most of 
these techniques require multiple observations of the holographically re
constructed image in order to reduce experimental errors . In these cases, 
one solves for the three components of the displacement vector that yield 
the least-square-error in an attempt to satisfy the overdetermined set of 
equations that is generated from the excess data as, for example, discussed 
in Reference 12. The above analysis require use of digital computers . The 
pertinent equations, however, can be reformulated in terms of projection 
matrices and solved on a programmable hand calculator, as discussed below . 

It is well known that fringe localization, observed with orthogonal slit 
apertures, can be used to determine two components of object displacement 
transverse to the observation direction . The vector sum of these two com
ponents may be referred to as the observed object di splacement kob· If we 
~ake twQ independent observations of the holographic image along directions 
K~ and K~, see Fig . 1, then the corresponding observed displacements h6b 
and k8b can be related to the total displacement vector k by projection 
matrices £1 and e2

, respectively, that is, 
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~ob = pi L 
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and 
P

2 L 2 
( 2) Lob = 

"' 
where the projection matrices were defined as 

Pm = "m "m Km® Km - !$2 !$2 = I m = 1,2 . ( 3) ,..., ,..., 2 2 

In Eq. ~. RT indicates a 3x3 antisymmetric matrix of the unit observation 
vector~~. l is a 3x3 identityAmatri~,and ~denotes a matric product of 
RT with 1tself (the operation KT ~ KT yields a matrixAwhose elements are 
all nine possible products of the three components of KT). 
Neither Eq . 1 nor Eq. 2, by itself, can be inverted to yie l d L because of 
the singularity of the projection matrices. Equations 1 and 2 may be com
bined, however, to yield an overdetermined set of equations 

( 4) 

which can be solved [2, 9] to yield 

L = [E1 
+ E2]-l(~ob + L

2
ob) ( 5) 

Equation 5 yields a value for k whose two proj ec tions onto planes normal 
to Ri and R~ have the least-square-error with respect to kbb and kbb· The 
above process may be extended to any number of observations by 

L = f f _em]-t( I L~b \ ( 6) 
lm=l m= I } 

where r indicates total number of views . Equation 6 allows a straight
forward, systematic solut i on for k on a programmable hand calculator . 

We should note, at this time, that Eq . 6 applies not only to the cases when 
fringe parallax is used in analysis of a holographic image, but also to 
cases which require simultaneous interpretation of two or more independent 
holograms of the same object (Fig . 2) and, therefore, when it i s impos sible 
to make continuous observations of the image. This latter case arises when 
we want to improve the accuracy for determination of the component of ob
ject displacement in the viewing direction, especially if the hologram i s 
not very large. Furthermore, Eq. 6 may also be used in speckle metrology 
[13] where the magnitude and direction of observed displacements relate 
directly to the frequency and orientation of halo fringes . 

Strain measurement 

The demand for greater optimization in the load resisting structures have 
created a need for better experimental techniques for accurate mea surement 
of structural deformations. Hologrammetry and related techniques are par
ticularly suited for this application because they allow rapid, full-sur
face in spection of a tested object which does not require any special prepa
ration. As a result of thi s , there were many techniques developed for holo
graph i c analysis of structures . For example, Dandliker et al . [ 14] have 
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developed an optoelectronic fringe interpolation technique, whereas 
Dubas and Schumann [15] proposed a theory of fringe localization requ i r ing 
a complex apparatus of coupled telescops . More recentl~ Stetson [16-18] 
presented a theory, that permits a straightforward determination of homo
geneous stra ins of arbitraril y three -di mens i ona l objects; in the case of 
heterogeneous strains - average values are obta ined . We cal l this technique 
the fringe vector method of holographic strain ana lys i s, because it recog 
nizes that any comb ination of homogeneous strain, shear, and rotation of 
an object yields fringes on its surface which can be described by a sing l e 
vector . In the fo ll owing, we shal l bri efly describe this new method and 
outline its use in strain ana lys i s. 

If an object undergoes a homogeneous deformation and/or rotation during the 
recording of a hologram, then, in the reconstruction, the object will be 
seen covered by a pattern of fringes that would appear to be generated 
along the lines of intersection of the object •s surface with a set of par
all el, equa ll y spaced planes (Fig . 3), cal l ed fringe-locus pl anes . The 
fringe -l ocus pl anes are uniquely defined by the fringe vect or whose mag
nitude is inversely proportional to the spacing between these planes and 
whose direction i s normal to them . As such, the fr inge vector ~f can be 
expressed in terms of the matr i x f of stra ins , shears, and rotations of the 
object , and the first-order variations of the sensit i vity vector g as [17] 

Lg (7) ,..... 

where ~ i s the sens iti vity vector defined as the difference between the ob
servat1on and illuminat i on vectors (that i s, ~ = ~2 - ~ 1 ) [19, 20] , k i s 
t he displacement vector , and g is defined as -

k k g = -R p2- -R· PI . (8) 
"' o"' I "' 

In Eq. 8 Ri and Ro are radii of cu r vature of illumination and observation 
perspectives, respectively, while el and £2 represent correspond ing projec
t i on matrices (see Eq. 3) . What we are interested in is the matr i x f which 
can be decomposed into a matrix of stra ins and shears, g , and a matrix of 
rotations, e. 
In order to so l ve Eq. 7 for the transformation matr ix f we perform mu l t i ple 
observati ons of the holographi~ally reconstructed image. For each observa
tion we determine the sens iti vity vector ~ and , al so, we find the fringe 
vecto r ~f that best fits the data from the entire region examined . We al so 
use mult1ple vi ews to obta in displacement L of a po int of interest on the 
object. Fo r each vi ew , we compute matrix g and multiply it by k to obta in 
perspective corrections to ~f· From mu lti pl e vi ews , we obt ain a set of 
equations of the type of Eq~ 7, with the matr i x f common to all, which may 
be so l ved [18] to obta in 

( 9) 

where ~fc = ~f - Lg is the matr i x formed by the frin ge vectors corrected 
for perspect i ve . - -Decompos i t i on of the matrix f, computed from Eq. 9, 
into the symmetri c part~ and the antisymmetric part e. that i s, 

e = l [t + fT] e = j_ [t - tT] (I O' 
"'2"""", ,.... 2,....,"" I 

gi ves strains and shears, and rotations, respectively. 

When the object deformations are not homogeneous over the entire body under 
study, they may, nonetheless, be approximate ly so over small regions of its 
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surface and projection matrices are very helpful in formulating the solu 
tion to this problem. It can be shown that, in this case, the surface 
strain-rotation matrix fs is 

f 5 = f Pn 
""' ""'""' 

( II ) 

where Pn is the projection matrix defined as Pn = l - n ® n, with n being 
surface normal. It should be noted that the derivatives of observed dis 
placement are not generally equal to surface strains and rotations of an 
object . They, become approximately equal to the extent that the viewing 
direction can be made parallel to the surface normal [21]. This condi 
tion is impossible to achive on any surface that exhibits three -dimension 
al contours, and it i s diff i cult to achive even on a flat surface because 
of the spherical perspective of most viewing systems . However, the deriv
atives of observed displacement from two or more viewing directions can be 
used to extract surface strains and rotations [21]. 

Contouring 

Many engineering problems require preparation of topographical maps of 
studied objects and hologrammetric techniques can be used to produce de
sired contours . This can be demostrated in an elegant wa~ using the de 
finition of the fringe vector, when we recognize that the projection ma
trices of Eq. 8 operate on object displacement k via Eq . 7. 

Let us assume that the object is illuminated and observed with a spherical 
perspective and that both, the illumination and observation, radii are 
equal to each other (that is, R0 = Ri = R) . Let us also assume that the 
strains and rotations are zero, that is, f = 0. Then, combining Eqs 7 and 
8 we obtain 

(12) 

where kill and kob represent the observed displacements lateral to the il
lumination and observation directions, respectively, which are defined as 

Lill = L [,! - K, ~K,] (13) 
and 

Lob = L [.!, - K2 ® K2 ] (14) 
Finally, subst i tution of Eqs 13 and 14 into Eq. 12 and subsequent simpli 
fication yield 

(15) 

In topographica l application of hologrammetry we desire to produce fringes 
which correspond to depth from the observer . For this condit i on, the 
fringe vector ~f must be parallel to the observation direction K2 . If 
translation is-to be used to generate contour fringes onAthe object then, 
from Eq. 15 it is clear that L must be perpendicular to K1 • The fringes 
corresponding to this translation are generated along the lines of inter
section of object 1 s surface with equidistant fringe -l ocus planes which are 
normal to the direction of observation. The distance d between these planes 
is inversely proportional to the magnitude of tf and is defined as d=n/l~fl · 
Thus, having computed d, we can accurately determine coordinates of any 
point on the surface of the object under investigation. 
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Surface roughness measurement 

Recent studies of statistical properties of laser speckl e patterns led to 
development of new methods for measurement of surface roughness. When com
pared with mechanical methods of surface roughness measurement, the speckle 
techniques are advantageous because they are noncontact, nondestructive, 
are relatively easy to handle, and have potential for mass - production indus
trial applications . 

Depending on the rms roughness to be measured, three different speckle tech
niques can be distinguished . For measuring fine-scale surface roughness . 
less than 0.25 ~m, the coherent light speckle contrast method is used [22]. 
For moderate surface roughness, 0.2 - 5 ~m, polychromatic speckle pattern 
method applies [23]. Finally, for rough surfaces, 1 - 30 ~m. technique 
based on speckle pattern correlation gives the best results [24]. Since 
speckle pattern correlation technique would have most extensive photogram
metric applications, it will be briefly discussed herein, for discussion 
of the other two methods References 4, 22, and 23 should be consulted. 

In the speckle pattern correlation method, the rough surface under exami
nation is illuminated by a coherent plane wave from a laser, Fig. 4a . The 
speckle pattern produced by a wave incident on the surface is recorded, in 
the Fraunhofer diffraction region, in a suitable photographic emulsion 
placed normal to the direction defined by an angle 82 . Then, the angle of 
incidence is varied by a small amount 88 1 and a second exposure is made on 
the same emulsion . This change of the incidence angle from 81 to 81+88 1 

produces a decrease in correlation between the two speckle patterns which 
is a function of the surface roughness. The degree of correlation is di 
rectly related to the visibil ity of Young's fringes (Fio. 4b), which are 
produced at the focal plane of a reconstructing lens (Fig . 4c). from the 
two speckle patterns recorded in the film. Visibi li ty V of these fringes 
is related to the surface roughness Rs by 

V = .!..exp{-.!..[(27T)sin(8, + 82)R 8e]2}. (16) 
2 2 A. cos82 s ' 

Equation 16 clearly indicates that surface roughness can be measured by 
determining the vis i bility of Young's fringes as a function of 88 1 when 
the geometric parameters 8 1 and 82 as well as the wavelength A are fixed . 

Other representative appl i cations of hologrammetry 

Hologrammetry is finding ever increasing applicat i on in vibrat i on analysis, 
because of the simplicity of the method. We merely need to vibrate the 
object while making a hologram of it, develop the hologram, and observe 
the reconstruction. Fringes that are seen in the reconstruction connect 
al l points of common amplitude and are represented by a zero-order Bessel 
function of the first kind, whose argument is realated to the vibration 
amplitude of the object . Extens i ve theory of holographic vibration analy
sis has been developed by Stetson [25] . 

A recent development and use of an image derotator has made i t possible to 
extend the techniques of hologram interferometry and speckle metrology to 
the vibration analysis of rotating objects [26] . The combination of holo
graphy and speckle metrology, together with the variation in pulse separa
tion, allows for a very wide range of vibration ampl itudes to be recorded. 
The technique applies to contoured objects, to resonant and nonresonant 
vibrations, and to speeds up to 10 000 rpm. Because of the importance of 
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vibration analysis of rotating structures, the image derotator system is 
of considerable engineering value . 

Hologrammetry is widely used in nondestructive testing of various compo 
nents including microcrack detection (Fig . 5), inspection of laminated 
structures and·composite materia l s, pressure vessel inspection, etc . 
These and other applications are carried out with computer compatible 
video systems . Such systems enable data to be acquired optically and 
processed electronically, thus providing very versatile instruments. 

Although it may seem, from the foregoing dicussion, that hologrammetry 
and related techniques are only useful in research and industrial ap 
plications, they are, nontheless, ideally suited for certain studies in 
biostereometri cs. In particular, hologrammetry allowed accurate, non
invasive quantification of cranio - facial and dental displacements in 
three -dimensional space [27 -29] . 
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IMAGE 

Fig. 1. Multiple observations of 
an image through a single holo 

gram. 

Fig . 2. Use of multiple holograms 
in analysis of a single image. 

Fig . J. Photograph of a typical recon
struction from a double-exposure holo
gram recording rotation of an object. 
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SPECKLEGRAM SCREEN ( c ) 

SURFACE 
NORMAL 

Fig . 4. Surface roughness measurement by speckle pattern corre 1 at ion meth
od : (a) recording geometry, (b) Young's fringes at the Fourier transform 

pl ane obtained using the arrangement shown i n (c) . 

Fig . 5. Mi crocrack detect i on i n porous ceram c components . In (a) to (d) 
the test component remains the same , on ly the point of force application 
is changed . Discontinu i ty in a f r inge pattern cl early indi cates presence 

of a crack . 
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